		artment of hematics .	INDIAN SCHOOL AL WADI AL KABIR Class X, Mathematics Worksheet- Pair of Linear Equations in Two Variables $04-04-2024$					
$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Questions of 1 Mark each. (MCQ's)							
1.	Of equations $2 \mathrm{x}-\mathrm{y}=0$ and $2 \mathrm{y}-\mathrm{x}=0$ has:							
	A	Infinitely many solutions	B	A unique solution	C	Two solutions	D	No solutions
2.	Graphically, the pair of equations $6 x-3 y+10=0$ and $2 x-y+9=0$ represents two lines which are:							
	A	intersecting at exactly one point	B	intersecting at exactly two points.	C	coincident	D	parallel
3.	The pair of equations $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$ graphically represents lines which are:							
	A	parallel	B	intersecting at $(\mathrm{a}, \mathrm{~b})$	C	coincident	D	intersecting at (b, a)
4.	One equation of a pair of dependent linear equations is $-5 x+7 y=2$. The second equation can be:							
	A	$10 x-14 y=-4$	B	$-10 x-14 y+4=0$	C	$-10 x+14 y+4=0$	D	$10 x+14 y+4=0$
5.	If the lines given by $3 x+2 k y=2$ and $2 x+5 y+1=0$ are parallel, then the value of k is:							
	A	$\frac{-5}{4}$	B	$\frac{2}{5}$	C	$\frac{15}{4}$	D	$\frac{3}{2}$
6.	The value of c for which the pair of equations $c x-y=2$ and $6 x-2 y=4$ will have infinitely many solutions is:							
	A	3	B	-3	C	12	D	No value
7.	The graph of $x=3$ is a line parallel to:							
	A	x - axis	B	y-axis	C	both axes	D	none of these
8.7 The value of x and y satisfying the 2 equations $32 x+33 y=34,33 x+32 y=31$ respectively are:								
	A	-1,2	B	-1, 4	C	1, -2	D	-1, -4

9.	On solving the following pair of linear equations: $2 \mathrm{x}-\mathrm{y}=2 ; 5 \mathrm{x}+2 \mathrm{y}=14$, the values of x and y are:							
	A	$(-2,4)$	B	(2, 2)	C	$(2,4)$	D	(2, -4)
10.	Two lines are given to be parallel. The equation of one of the lines is $3 x-2 y=5$. The equation of the second line can be:							
	A	$9 x+8 y=7$	B	$-12 x-8 y=7$	C	$-12 x+8 y=7$	D	$12 \mathrm{x}+8 \mathrm{y}=7$
11.	The lines represented by linear equations $y=x$ and $x=4$ intersect at P. The coordinates of the point P are:							
	A	$(4,0)$	B	$(-4,4)$	C	$(0,4)$	D	$(4,4)$
12.	If $31 x+43 y=117$ and $43 x+31 y=105$, then value of $x-y$ is:							
	A	-1	B	$\frac{1}{3}$	C	3	D	$\frac{-1}{3}$
13.	The pair of linear equations $k x+2 y=3$ and $3 x+6 y=10$ have a unique solution if:							
	A	$\mathrm{k}=9$	B	$\mathrm{k}=1$	C	$\mathrm{k}=1$	D	$\mathrm{k} \neq 9$
	DIRECTION: In the following questions, a statement of assertion (A) is followed by statement of Reason (R). Choose the correct option							
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.							
14.	Assertion: The pair of linear equations $x-2 y-3=0$ and $3 x+4 y-20=0$ have exactly one solution. Reason: The pair of linear equations $2 x+3 y-9=0$ and $4 x+6 y-18=0$ have a unique solution							
15.	Assertion: The value of k for which the system of linear equations $3 x-4 y=7$ and $6 x-8 y=k$, has infinite number of solutions is 14 . Reason: The graph of linear equations $a_{1} \mathrm{x}+b_{1} \mathrm{y}+c_{1}=0$ and $a_{2} \mathrm{x}+b_{2} \mathrm{y}+c_{2}=0$ gives a pair of coincident lines if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$							

Answers								
	1	B	2	D	3	B	4	A

